

High Current Direct Current (HCDC) Superconductor Cable

Why High Current DC (HCDC) Cables

- DC is the preferred transmission method for transferring large amounts of power over long distances -
- Overhead HVDC lines are extremely difficult to permit in the US
- Underground HVDC cables are limited to oil dielectrics above ~300MW power transfer capability
- DC allows power transfers between asynchronous control areas
- Converter station reliability is increased more elements in parallel for given power transfer capability
- Converter station size can be reduced

HCDC Cables provide smaller overall footprint and high power transfer capability

The Value of HCDC

- HTS HCDC power cables increase power transfer of rights-of-way by 8-10X at the same voltage
- LV/MV ROWs are much more pervasive than HV/EHV ROWs
- LV/MV circuits have reduced permitting constraints
- Commercial Value A 400/600MW link has less probability of destroying pricing differentials between market areas than a large 2/3GW link
- Islands & Bridges Quick isolation enables reduced large scale system issues at the cost of more small scale system issues
- The first step towards the development of the SuperGrid concept

Onshore DC Transmission Technology

- Available Conventional HVDC
 - OH > +/- 600kVDC 6300 MW (Itaipu, Brazil)
 - UG Oil Filled > +/- 500kV 2000MW (Empire Project)
 - UG XLPE > +/- 141kVDC 600 MW (HVDC Light / ABB)
- HCDC Power Transfer Potential
 - UG MV > +/- 30kV 600MW
 - Seam Patch Application
 - UG MV > +/- 60kV 1200MW
 - Bulk Transfer
 - UG HV > +/-150kV 4000 MW
 - Bulk Transfer

Underground HCDC Cables provide power transfer capabilities comparable to OH

HCDC Cables – An Explanation

- Power Carrying Capabilities 8x to 20x
 Greater than Copper Cables
- HTS Wire Enables a Core Geometry that Provides
 - Low Conductor Resistance
 - Low Inductance
- Environmental Compatibility
 - Underground Placement
 - No Electromagnetic Field
 - Thermally Independent of Environment
 - Nitrogen Cooling Fluid (Inert) No Oil

Typical DC Cable (Ground Return) Cross Section

HTS HVDC Paradigm Shifts

- Conductor size and heat removal no longer drive system design
- High current operation improves reliability due to more parallel (less serial) elements in converter stations
- Losses are function of length (thermal) – not a square function of current
- Bi-pole with Electrode Return
- HV link voltage control vs. current control

Basic HVDC design criteria change significantly when using HTS cable

HCDC Technical Development

- System Level Items
 - Converter Architecture Trade-offs (Constant current topology)
 - Over voltage issues caused by L di/dt issues
 - AC losses due to ripple on the DC link
- Cable Related Items
 - Single/multiple cryostat design tradeoff
 - Fault capability on the DC Link
 - DC Dielectric behavior at 77K
 - Aging characteristics of DC insulation systems
 - Cable design/production time requirements
 - Accessory design/production time requirements

Next major step in implementing HTS technology in the grid

Project Components

- Develop and demonstrate the feasibility of a High Current Medium Voltage DC cable system
- Identify System Topologies for Initial and Future HCDC Systems
- Establish MV Converter Station Economics
- Identify and Validate Applications and Markets for HCDC Systems
- Develop Pathway to Multi-GW Class HCDC Systems

HTS HVDC Cable System Diagram

DC Cables allow direct solutions for solving transmission system problems